
The DOs of Magento 2 
Extension Development

DO USE COMPOSER 
Use composer packages to distribute (especially commercial) extensions. For a local 
environment, it is fine to develop your own code under app/code. However, once 
you distribute your module to other environments, it should be through composer 
as otherwise dependencies are left unmanaged. In a production environment, the 
app/code folder should therefore ideally be empty.

DO USE SERVICE CONTRACTS
Whenever a dependency is injected into a class try to abstract this dependency. If 
there is a preference for a specific class, in the form of a PHP interface, you should 
inject the interface instead. Inject only classes or interfaces (aka Service Contracts) 
that are either part of the Magento framework or the API of specific modules.

DO WRITE TESTS
Testing becomes a habit that pays off in the long run. Make sure functionality is 
tested using integration tests and functional tests. Remember that unit tests make 
more sense with isolated code, integration tests make more sense with code that 
touches the rest of Magento.

DO DOCUMENT YOUR DEPENDENCIES
If your module depends on other modules, make sure that both your composer file 
and your module.xml file reflect this. If your module only depends on the Magento 
framework, your module should likely be treated as a library, not a module. Your 
composer version constraints should respect the semantic versioning standards of 
Magento.

DO VERSION RELEASES 
Whenever you have made a change, increase your composer package version 
number. Follow semantic versioning: Major for compatibility changes, minor for 
features, patch for fixes. Only increase the  setup_version number in your 
module.xml file when changes to the database are needed.

DO PROVIDE A USER MANUAL
All users should get clear instructions on how to install, update and remove your 
extension as well as how to use the provided functionality. This could include a 
technical overview of your extension, documenting your customisation points like 
observable events and your public API definition.

DO USE EVENTS AND PLUGINS 
Use events and plugins on @api marked methods as primary means of customising 
functionality. When intercepting functionality of non-API methods using plugins, 
which is less recommended, make sure to reflect this in your composer version 
constraints. Avoid redefining existing preferences where possible.

DO CHECK YOUR CODE
Use a static analysis tool like PHP CodeSniffer (with the ExtDN and MEQP rulesets). 
Check whether your extension works in Production Mode. Confirm your extension 
works under the Magento versions that you claim compatibility with. Have a 
colleague or friend review your code before releasing it.

ExtDN.org



Collectively, ExtDN members are committed 
to advancing Magento as the world's leading 
ecommerce platform for merchants.

DO USE COMPOSER 
Use composer packages to distribute (especially commercial) extensions. For a local 
environment, it is fine to develop your own code under app/code. However, once 
you distribute your module to other environments, it should be through composer 
as otherwise dependencies are left unmanaged. In a production environment, the 
app/code folder should therefore ideally be empty.

DO USE SERVICE CONTRACTS
Whenever a dependency is injected into a class try to abstract this dependency. If 
there is a preference for a specific class, in the form of a PHP interface, you should 
inject the interface instead. Inject only classes or interfaces (aka Service Contracts) 
that are either part of the Magento framework or the API of specific modules.

DO WRITE TESTS
Testing becomes a habit that pays off in the long run. Make sure functionality is 
tested using integration tests and functional tests. Remember that unit tests make 
more sense with isolated code, integration tests make more sense with code that 
touches the rest of Magento.

DO DOCUMENT YOUR DEPENDENCIES
If your module depends on other modules, make sure that both your composer file 
and your module.xml file reflect this. If your module only depends on the Magento 
framework, your module should likely be treated as a library, not a module. Your 
composer version constraints should respect the semantic versioning standards of 
Magento.

DO VERSION RELEASES 
Whenever you have made a change, increase your composer package version 
number. Follow semantic versioning: Major for compatibility changes, minor for 
features, patch for fixes. Only increase the  setup_version number in your 
module.xml file when changes to the database are needed.

DO PROVIDE A USER MANUAL
All users should get clear instructions on how to install, update and remove your 
extension as well as how to use the provided functionality. This could include a 
technical overview of your extension, documenting your customisation points like 
observable events and your public API definition.

DO USE EVENTS AND PLUGINS 
Use events and plugins on @api marked methods as primary means of customising 
functionality. When intercepting functionality of non-API methods using plugins, 
which is less recommended, make sure to reflect this in your composer version 
constraints. Avoid redefining existing preferences where possible.

DO CHECK YOUR CODE
Use a static analysis tool like PHP CodeSniffer (with the ExtDN and MEQP rulesets). 
Check whether your extension works in Production Mode. Confirm your extension 
works under the Magento versions that you claim compatibility with. Have a 
colleague or friend review your code before releasing it.

ExtDN.org


