
Ten Tips For Secure
Magento 2 Development

VALIDATE AND SANITISE ALL INPUTS
Any input your code receives from anywhere is potentially bad. Don’t trust anything, even if
it comes from a trusted person like an admin, because accounts get compromised. Either
sanitise inputs so they contain only good data (removing invalid characters, casting
numeric values to int or float, etc.), or return an error message if you find anything bad or
unexpected. Inputs must be validated or sanitised on the server; JavaScript validation can
be bypassed.

AUTHENTICATE USERS AND CONTROL ACCESS CAREFULLY
All admin and API features should have a specific Access Control List resource to allow or
deny access to that feature or data. In general it is a good idea for a feature to only require
the minimum access in its ACL to execute successfully. All customer features should verify
that data belongs to only the current customer to prevent data leakage and unauthorised
access. Magento does provide a CustomerSession object to manage customer sessions,
rely on that first.

AVOID DYNAMIC CODE TO PREVENT REMOTE CODE EXECUTION (RCE)
PHP offers numerous ways to execute code dynamically, including eval , exec , system ,
shell_exec , create_function , preg_replace with /e, and more. Not using these
methods at all is the best way to avoid remote code execution vulnerabilities.

BE CAREFUL ABOUT DATABASE QUERIES TO PREVENT SQL INJECTION (SQLI)
Use Magento’s database abstraction layer rather than constructing SQL queries manually.
It will protect you under most circumstances. Any user input passed to the database
should be checked to make sure it doesn’t contain unexpected input.

AVOID UNSERIALIZE() TO PREVENT PHP OBJECT INJECTION (POI)
If you are in a position to decide data storage formats, JSON will almost always be an
acceptable and safer option than PHP’s serialization. When working with
already-serialised data, use Magento’s provided classes like
\Magento\Framework\Unserialize\Unserialize and
\Magento\Framework\Serialize\SerializerInterface .

ESCAPE OUTPUT TO PREVENT CROSS-SITE SCRIPTING (XSS)
Any time you output a variable, use the appropriate Magento escape method to avoid
running injected code or breaking the page. These include
$block->escapeHtml($string) , escapeHtmlAttr , escapeJs , escapeCss , and
escapeUrl (in Magento 2.2+).

USE FORM KEY VALIDATION TO PREVENT CROSS-SITE REQUEST FORGERY (CSRF)
Any request that changes data or causes an action to occur should be sent as a POST
request, and include a form key that is specific to the user’s session. That form key must
be validated on the server side, and an error should be returned with no action taken if it
fails to validate. Form keys should never be passed in URLs or over a non-SSL connection.

VALIDATE UNKNOWN XML TO PREVENT EXTERNAL ENTITY PROCESSING (XXE)
Any XML parsed by simplexml_load_string() is potentially vulnerable to XML External
Entity Processing. Check the XML with \Magento\Framework\Xml\Security->scan($xml)
before parsing to stay safe.

AVOID LOGGING CONFIDENTIAL DATA TO PREVENT INFORMATION DISCLOSURE
Log files should never contain passwords, API Keys, credit card numbers, or any other
confidential data, even in error messages or stack traces. Avoid logging any form of
customer-specific information. Log files are often shared, and easily misplaced or
forgotten.

MONITOR YOUR DEPENDENCIES
When you include third-party code as a dependency, you are taking on responsibility for
it. Follow their releases and security updates to ensure you are in a position to make any
necessary changes to your code quickly. Use tools like Github Security Alerts and
Roave/SecurityAdvisories to keep up to date.

More Resources at ExtDN.org

VALIDATE AND SANITISE ALL INPUTS
Any input your code receives from anywhere is potentially bad. Don’t trust anything, even if
it comes from a trusted person like an admin, because accounts get compromised. Either
sanitise inputs so they contain only good data (removing invalid characters, casting
numeric values to int or float, etc.), or return an error message if you find anything bad or
unexpected. Inputs must be validated or sanitised on the server; JavaScript validation can
be bypassed.

AUTHENTICATE USERS AND CONTROL ACCESS CAREFULLY
All admin and API features should have a specific Access Control List resource to allow or
deny access to that feature or data. In general it is a good idea for a feature to only require
the minimum access in its ACL to execute successfully. All customer features should verify
that data belongs to only the current customer to prevent data leakage and unauthorised
access. Magento does provide a CustomerSession object to manage customer sessions,
rely on that first.

AVOID DYNAMIC CODE TO PREVENT REMOTE CODE EXECUTION (RCE)
PHP offers numerous ways to execute code dynamically, including eval , exec , system ,
shell_exec , create_function , preg_replace with /e, and more. Not using these
methods at all is the best way to avoid remote code execution vulnerabilities.

BE CAREFUL ABOUT DATABASE QUERIES TO PREVENT SQL INJECTION (SQLI)
Use Magento’s database abstraction layer rather than constructing SQL queries manually.
It will protect you under most circumstances. Any user input passed to the database
should be checked to make sure it doesn’t contain unexpected input.

AVOID UNSERIALIZE() TO PREVENT PHP OBJECT INJECTION (POI)
If you are in a position to decide data storage formats, JSON will almost always be an
acceptable and safer option than PHP’s serialization. When working with
already-serialised data, use Magento’s provided classes like
\Magento\Framework\Unserialize\Unserialize and
\Magento\Framework\Serialize\SerializerInterface .

ESCAPE OUTPUT TO PREVENT CROSS-SITE SCRIPTING (XSS)
Any time you output a variable, use the appropriate Magento escape method to avoid
running injected code or breaking the page. These include
$block->escapeHtml($string) , escapeHtmlAttr , escapeJs , escapeCss , and
escapeUrl (in Magento 2.2+).

USE FORM KEY VALIDATION TO PREVENT CROSS-SITE REQUEST FORGERY (CSRF)
Any request that changes data or causes an action to occur should be sent as a POST
request, and include a form key that is specific to the user’s session. That form key must
be validated on the server side, and an error should be returned with no action taken if it
fails to validate. Form keys should never be passed in URLs or over a non-SSL connection.

VALIDATE UNKNOWN XML TO PREVENT EXTERNAL ENTITY PROCESSING (XXE)
Any XML parsed by simplexml_load_string() is potentially vulnerable to XML External
Entity Processing. Check the XML with \Magento\Framework\Xml\Security->scan($xml)
before parsing to stay safe.

AVOID LOGGING CONFIDENTIAL DATA TO PREVENT INFORMATION DISCLOSURE
Log files should never contain passwords, API Keys, credit card numbers, or any other
confidential data, even in error messages or stack traces. Avoid logging any form of
customer-specific information. Log files are often shared, and easily misplaced or
forgotten.

MONITOR YOUR DEPENDENCIES
When you include third-party code as a dependency, you are taking on responsibility for
it. Follow their releases and security updates to ensure you are in a position to make any
necessary changes to your code quickly. Use tools like Github Security Alerts and
Roave/SecurityAdvisories to keep up to date.

More Resources at ExtDN.org

